If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4q^2+18q-50=0
a = 4; b = 18; c = -50;
Δ = b2-4ac
Δ = 182-4·4·(-50)
Δ = 1124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1124}=\sqrt{4*281}=\sqrt{4}*\sqrt{281}=2\sqrt{281}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{281}}{2*4}=\frac{-18-2\sqrt{281}}{8} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{281}}{2*4}=\frac{-18+2\sqrt{281}}{8} $
| -7z+8=-55 | | 2x+16-5x+8=3(5+6x)-12x | | y+12/7=6 | | -3(a+17)=3(9-5) | | -5(7-2c)=26 | | 38=-5y-27 | | g+34=91 | | 5x-3x-14=0 | | Z+16=2z+3 | | 35xx=100 | | -9+3+7b=-3b+8 | | 3g+4=2(g-3) | | 1331=1100^n | | Y-7x=-10 | | 12x-10=-3x+35 | | -20k=160 | | 19–(3x+4)–8=4(x+2)+4 | | m/8+39=46 | | 75x+74=180 | | 2+2x-(-3)=-2 | | 8/5=48/n | | -9v+26=-7(v-2) | | 1/2(a+2)+a=-3 | | -29=-8z+3 | | (9t/20)-(1/4)=1 | | 1/2(a+2)+a=3 | | 11.2=1.4+x | | (4p^2-20p+25=0 | | -2(u-7)=-7u-21 | | 18=10+w | | a–11.3=30 | | 7x+2x-7=11 |